Neural network survival analysis for personal loan data
نویسندگان
چکیده
Traditionally, customer credit scoring aimed at distinguishing good payers from bad payers at the time of the loan application. However, the timing when customers become bad is also very interesting to investigate since it can provide the bank with the ability to compute the profitability over a customer’s lifetime and perform profit scoring. The problem statement of analysing when customers default is commonly referred to as survival analysis. It is the purpose of this paper to discuss and contrast statistical and neural network approaches for survival analysis in a creditscoring context. When compared to the traditional statistical proportional hazards model, neural networks may offer an interesting alternative because of their universal approximation property and the fact that no baseline hazard assumption is needed. Several neural network survival analysis models are discussed and evaluated according to their way of dealing with censored observations, time-varying inputs, the monotonicity of the generated survival curves and their scalability. In the experimental part of this paper, we contrast the performance of a neural network survival analysis model with that of the well-known proportional hazards model for predicting both loan default and early repayment using data from a U.K. financial institution.
منابع مشابه
Estimating Efficiency of Bank Branches by Dynamic Network Data Envelopment Analysis and Artificial Neural Network
Network data envelopment analysis models assess efficiency of decision-making unit and its sections using historical data but fail to measure efficiency of its units and their internal stages in the future. In this paper we aim to measure efficiency of stages of bank branches and obtain efficiency trend of stages during the time, then to estimate their efficiency in the future therefore we can ...
متن کاملComparison of Artificial Neural Networks and Cox Regression Models in Prediction of Kidney Transplant Survival
Cox regression model serves as a statistical method for analyzing the survival data, which requires some options such as hazard proportionality. In recent decades, artificial neural network model has been increasingly applied to predict survival data. This research was conducted to compare Cox regression and artificial neural network models in prediction of kidney transplant survival. The prese...
متن کاملComparison of Artificial Neural Networks and Cox Regression Models in Prediction of Kidney Transplant Survival
Cox regression model serves as a statistical method for analyzing the survival data, which requires some options such as hazard proportionality. In recent decades, artificial neural network model has been increasingly applied to predict survival data. This research was conducted to compare Cox regression and artificial neural network models in prediction of kidney transplant survival. The prese...
متن کاملArtificial neural networks: applications in predicting pancreatitis survival
Artificial neural networks are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the efficiency of a neural network for predicting the survival of patients with acute pancreatitis is compared with days-of-survival obtained from patients. A three- layer back-propagation neural network was developed for this purpose. Clinical data (e.g...
متن کاملArtificial neural networks: applications in predicting pancreatitis survival
Artificial neural networks are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the efficiency of a neural network for predicting the survival of patients with acute pancreatitis is compared with days-of-survival obtained from patients. A three- layer back-propagation neural network was developed for this purpose. Clinical data (e.g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JORS
دوره 56 شماره
صفحات -
تاریخ انتشار 2005